Biomarkers for Prostate Cancer Aggressiveness in Puerto Rican Men: Analysis of Phospho-Rb S249, N-cadherin, β-catenin, and E-cadherin Expression in Prostate Biopsies
DOI:
https://doi.org/10.71332/wdwgem70Keywords:
Prostate cancer, B-catenin, Puerto Rico, Epitheliat-toMesenchymal Transition (EMT)Abstract
Prostate cancer (PCa) is the leading cause of cancer in Puerto Rican men and exhibits significant racial disparities globally. Although only 8% of cases invade beyond the prostate, predicting PCa aggressiveness is challenging. This study investigated the potential of the retinoblastoma tumor suppressor protein phosphorylated in Serine 249 (Phospho-Rb S249), N-cadherin, β-catenin, and E-cadherin as biomarkers for identifying aggressive PCa in Puerto Rican men. We hypothesized that the expression of these proteins could serve as biomarkers for identifying PCa tumors with potential to becoming aggressive in Puerto Rican men. Immunohistochemistry was performed on 23 biopsies from Puerto Rican men to evaluate the biomarkers’ expression, and correlation analyses examined associations with clinicopathological parameters. Results showed that Phospho-Rb S249 expression correlated positively with tumor size and positive cores in patients with Gleason scores ≥4+3. β-catenin was positively associated with tumor size and carcinoma percentage in Gleason scores >4+3. E-cadherin expression negatively correlated with grade group, indicating a protective role. In contrast, N-cadherin and β-catenin were more prominent in Gleason scores <3+4, hinting at their involvement in early epithelial-to-mesenchymal transition (EMT). A decision tree analysis identified N-cadherin expression as a key determinant for classifying PCa aggressiveness, with an 82% likelihood. These findings suggest N-cadherin as a biomarker for identifying PCa with the potential to become aggressive. While our study provides promising results, further validation in a larger patient cohort is needed to increase the robustness and reliability of our findings. Also, combining multiple biomarkers could further enhance the specificity of aggressive PCa detection.
References
Borregales, L.D.; DeMeo, G.; Gu, X.; et al. Grade migration of prostate cancer in the United States during the last decade. J. Natl. Cancer Inst. 2022, 114, 1012–1019. doi:10.1093/jnci/djac066.
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. doi:10.3322/caac.21763.
Van de Merbel, A.F.; van der Horst, G.; Buijs, J.T.; van der Pluijm, G. Protocols for migration and invasion studies in prostate cancer. In Methods in Molecular Biology; Clifton, N.J., Ed.; Springer: Berlin, Germany, 2018; Volume 1786, pp. 67–79. doi:10.1007/978-1-4939-7845-8_4.
National Cancer Institute [NCI]. SEER Cancer Stat Facts: Prostate Cancer. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 10 June 2024).
Loeb, S.; Bjurlin, M.; Nicholson, J.; Tammela, T.; Penson, D.; Carter, B.; Carroll, P.; Etzioni, R. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 2014, 65, 1046–1055. doi:10.1016/j.eururo.2013.12.062.
Aizer, A.A.; Gu, X.; Chen, M.H.; Choueiri, T.K.; Martin, N.E.; Efstathiou, J.A.; Hyatt, A.S.; Graham, P.L.; Trinh, Q.D.; Hu, J.C.; Nguyen, P.L. Cost implications and complications of overtreatment of low-risk prostate cancer in the United States. J. Natl. Compr. Cancer Netw. 2015, 13, 61–68. doi:10.6004/jnccn.2015.0009.
Boström, P.; Bjartell, A.; Catto, J.; Eggener, S.; Lilja, H.; Loeb, S.; Schalken, J.; Schlomm, T.; Cooperberg, M. Genomic predictors of outcome in prostate cancer. Eur. Urol. 2015, 68, 1033–1044. doi:10.1016/j.eururo.2015.04.008.
Ebell, M.H. Prolaris test for prostate cancer risk assessment. Am. Fam. Physician 2019, 100, 311–312.
Health Quality Ontario. Prolaris cell cycle progression test for localized prostate cancer: A health technology assessment. Ont. Health Technol. Assess. Ser. 2017, 17, 1–75.
Dall’Era, M.A.; Maddala, T.; Polychronopoulos, L.; Gallagher, J.R.; Febbo, P.G.; Denes, B.S. Utility of the Oncotype DX® Prostate Cancer Assay in clinical practice for treatment selection in men newly diagnosed with prostate cancer: A retrospective chart review analysis. Urology Pract. 2015, 2, 343–348. doi:10.1016/j.urpr.2015.02.007.
Creed, J.H.; Berglund, A.E.; Rounbehler, R.J.; Awasthi, S.; Cleveland, J.L.; Park, J.Y.; Yamoah, K.; Gerke, T.A. Commercial gene expression tests for prostate cancer prognosis provide paradoxical estimates of race-specific risk. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 246–253. doi:10.1158/1055-9965.EPI-19-0407.
Riaz, I.; Islam, M.; Ikram, W.; Naqvi, S.; Maqsood, H.; Saleem, Y.; Riaz, A.; Ravi, P.; Wang, Z.; Hussain, S.; Warner, J.; Odedina, F.; Duma, N.; Singh, P.; Kehl, K.; Kamran, S.; Murad, M.; Landman, A.; Allen, E.; Bryce, A. Disparities in the inclusion of racial and ethnic minority groups and older adults in prostate cancer clinical trials: A meta-analysis. JAMA Oncol. 2022. doi:10.1001/jamaoncol.2022.5511.
Soto-Salgado, M.; Suárez, E.; Torres-Cintrón, M.; Pettaway, C.; Colón, V.; Ortiz, A. Prostate cancer incidence and mortality among Puerto Ricans: an updated analysis comparing men in Puerto Rico with US racial/ethnic groups. P.R. Health Sci. J. 2012, 31, 107–113.
Chinea, F.; Patel, V.; Kwon, D.; Lamichhane, N.; Lopez, C.; Punnen, S.; Kobetz, E.; Abramowitz, M.; Pollack, A. Ethnic heterogeneity and prostate cancer mortality in Hispanic/Latino men: A population-based study. Oncotarget 2017, 8, 19068. doi:10.18632/oncotarget.19068.
Borrell, L. Racial identity among Hispanics: implications for health and well-being. Am. J. Public Health 2005, 95, 379–381. doi:10.2105/AJPH.2004.058172.
El-Bahrawy, M.; Pignatelli, M. E-cadherin and catenins: molecules with versatile roles in normal and neoplastic epithelial cell biology. Microsc. Res. Tech. 1998, 43, 224–235. doi:10.1002/(SICI)1097-0029(19981101)43:3<224::AID-JEMT4>3.0.CO;2-Q.
Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 2005, 6, 622–634. doi:10.1038/nrm1699.
Mendonsa, A.M.; Na, T.Y.; Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene 2018, 37, 4769–4780. doi:10.1038/s41388-018-0304-2.
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. doi:10.1038/nrm3758.
Francis, J.; Thomsen, M.; Taketo, M.; Swain, A. β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 2013, 9, e1003180. doi:10.1371/journal.pgen.1003180.
Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 2008, 14, 818–829. doi:10.1016/j.devcel.2008.05.009.
Barber, A.G.; Castillo-Martin, M.; Bonal, D.M.; Jia, A.J.; Rybicki, B.A.; Christiano, A.M.; Cordon-Cardo, C. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med. 2015, 4, 1258–1271. doi:10.1002/cam4.463.
Gravdal, K.; Halvorsen, O.; Haukaas, S.; Akslen, L. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin. Cancer Res. 2007, 13, 7003–7011. doi:10.1158/1078-0432.CCR-07-1263.
Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene 2006, 25, 5220–5227. doi:10.1038/sj.onc.1209615.
Chen, L.; Liu, S.; Tao, Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct. Target. Ther. 2020, 5, 196. doi:10.1038/s41392-020-0196-9.
Aparicio, A.; Den, R.B.; Knudsen, K.E. Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat. Rev. Urol. 2011, 8, 562–568. doi:10.1038/nrurol.2011.107.
Pérez-Morales, J.; Mejías-Morales, D.; Rivera-Rivera, S.; González-Flores, J.; González-Loperena, M.; Cordero-Báez, F.Y.; Pedreira-García, W.M.; Chardón-Colón, C.; Cabán-Rivera, J.; Cress, W.D.; Gordian, E.R.; Muñoz-Antonia, T.; Cabrera-Ríos, M.; Isidro, A.; Coppola, D.; Rosa, M.; Boyle, T.A.; Izumi, V.; Koomen, J.M.; Santiago-Cardona, P.G. Hyper-phosphorylation of Rb S249 together with CDK5R2/p39 overexpression are associated with impaired cell adhesion and epithelial-to-mesenchymal transition: Implications as a potential lung cancer grading and staging biomarker. PLoS One 2018, 13, e0207483. doi:10.1371/journal.pone.0207483.
Valle Cortés, S.M.; Pérez Morales, J.; Nieves Plaza, M.; Maldonado, D.; Tevenal Baez, S.M.; Negrón Blas, M.A.; Lazcano Etchebarne, C.; Feliciano, J.; Ruiz Deyá, G.; Santa Rosario, J.C.; Santiago Cardona, P. Integrating proteomic analysis and machine learning to predict prostate cancer aggressiveness. Stats 2024, 7, 875–893. doi:10.3390/stats7030053.
Pérez-Morales, J.; Núñez-Marrero, A.; Santiago-Cardona, P.G. Immunohistochemical detection of retinoblastoma protein phosphorylation in human tumor samples. In Methods in Molecular Biology; Clifton, N.J., Ed.; Springer: Berlin, Germany, 2018; Volume 1726, pp. 77–84. doi:10.1007/978-1-4939-7565-5_8.
National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Prostate Cancer. In NCCN Guidelines Version 1.2025; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 14 March 2025).
Munjal, A.; Leslie, S.W. Gleason Score. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553178/.
Zhu, X.; Gou, X.; Zhou, M. Nomograms predict survival advantages of Gleason score 3+4 over 4+3 for prostate cancer: A SEER-based study. Front. Oncol. 2019, 9, 646. doi:10.3389/fonc.2019.00646.
Chan, T.; Partin, A.; Walsh, P.; Epstein, J. Prognostic significance of Gleason score 3+4 versus Gleason score 4+3 tumor at radical prostatectomy. Urology 2000, 56, 823–827. doi:10.1016/S0090-4295(00)00753-6.
Epstein, J. Prostate cancer grade groups correlate with prostate-specific cancer mortality: SEER data for contemporary graded specimens. Eur. Urol. 2017, 71, 764–765. doi:10.1016/j.eururo.2016.12.014.
Saadatmand, S.; de Kruijf, E.M.; Sajet, A.; Dekker-Ensink, N.G.; van Nes, J.G.H.; Putter, H.; Smit, V.T.H.B.M.; van de Velde, C.J.H.; Liefers, G.J.; Kuppen, P.J.K. Expression of cell adhesion molecules and prognosis in breast cancer. Br. J. Surg. 2013, 100, 252–260. doi:10.1002/bjs.8980.
Hui, L.; Zhang, S.; Dong, X.; Tian, D.; Cui, Z.; Qiu, X. Prognostic significance of twist and N-cadherin expression in NSCLC. PLoS One 2013, 8, e62171. doi:10.1371/journal.pone.0062171.
Seo, D.D.; Lee, H.C.; Kim, H.J.; Min, H.J.; Kim, K.M.; Lim, Y.S.; Chung, Y.H.; Lee, Y.S.; Suh, D.J.; Yu, E.; Chun, S.Y. Neural cadherin overexpression is a predictive marker for early postoperative recurrence in hepatocellular carcinoma patients. J. Gastroenterol. Hepatol. 2008, 23, 1112–1118. doi:10.1111/j.1440-1746.2007.05182.x.
Nieman, M.; Prudoff, R.; Johnson, K.; Wheelock, M. N-Cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell Biol. 1999, 147, 631–644. doi:10.1083/jcb.147.3.631.
Cao, Z.; Wang, Z.; Leng, P. Aberrant N-cadherin expression in cancer. Biomed. Pharmacother. 2019, 118, 109320. doi:10.1016/J.BIOPHA.2019.109320.
Li, B.; Shi, H.; Wang, F.; Hong, D.; Lv, W.; Xie, X.; Cheng, X. Expression of E-, P- and N-Cadherin and its clinical significance in cervical squamous cell carcinoma and precancerous lesions. PLoS One 2016, 11. doi:10.1371/journal.pone.0155910.
Su, Y.; Li, J.; Shi, C.; Hruban, R.H.; Radice, G.L. N-cadherin functions as a growth suppressor in a model of K-ras-induced PanIN. Oncogene 2016, 35, 3335–3341. doi:10.1038/onc.2015.382.
Loh, C.; Chai, J.; Tang, T.; Wong, W.; Sethi, G.; Shanmugam, M.; Chong, P.; Looi, C. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 2019, 8. doi:10.3390/cells8101118.
Derycke, L.D.; Bracke, M.E. N-Cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int. J. Dev. Biol. 2004, 48, 463–476. doi:10.1387/ijdb.041793ld.
Sadot, E.; Simcha, I.; Shtutman, M.; Ben-Ze'ev, A.; Geiger, B. Inhibition of β-catenin-mediated transactivation by cadherin derivatives. Proc. Natl. Acad. Sci. USA 1998, 95, 15339–15344. doi:10.1073/PNAS.95.26.15339.
Kafri, P.; Hasenson, S.E.; Kanter, I.; Sheinberger, J.; Kinor, N.; Yunger, S.; Shav-Tal, Y. Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. eLife 2016, 5, e16748. doi:10.7554/eLife.16748.
Orsulic, S.; Huber, O.; Aberle, H.; Arnold, S.; Kemler, R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J. Cell Sci. 1999, 112, 1237–1245.
Gottardi, C.J.; Wong, E.; Gumbiner, B.M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J. Cell Biol. 2001, 153, 1049–1060. doi:10.1083/jcb.153.5.1049.
Kawada, M.; Seno, H.; Uenoyama, Y.; Sawabu, T.; Kanda, N.; Fukui, H.; Shimahara, Y.; Chiba, T. Signal transducers and activators of transcription 3 activation is involved in nuclear accumulation of beta-catenin in colorectal cancer. Cancer Res. 2006, 66, 2913–2917. doi:10.1158/0008-5472.CAN-05-3460.
Zhi, X.; Tao, J.; Xie, K.; Zhu, Y.; Li, Z.; Tang, J.; Wang, W.; Xu, H.; Zhang, J.; Xu, Z. MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 2014, 346, 104–113. doi:10.1016/j.canlet.2013.12.021.
Perumal, E.; Youn, K.; Sun, S.; Seung-Hyun, J.; Suji, M.; Liu, J.; Yeun-Jun, C. PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells. Lung Cancer 2019, 130, 25–34. doi:10.1016/j.lungcan.2019.01.013.
Oyama, T.; Kanai, Y.; Ochiai, A.; Akimoto, S.; Oda, T.; Yanagihara, K.; Nagafuchi, A.; Tsukita, S.; Shibamoto, S.; Ito, F. A truncated beta-catenin disrupts the interaction between E-cadherin and alpha-catenin: A cause of loss of intercellular adhesiveness in human cancer cell lines. Cancer Res. 1994, 54, 6282–6287.
Sanidas, I.; Morris, R.; Fella, K.A.; Rumde, P.H.; Boukhali, M.; Tai, E.C.; Ting, D.T.; Lawrence, M.S.; Haas, W.; Dyson, N.J. A code of mono-phosphorylation modulates the function of RB. Mol. Cell 2019, 73, 985–1000.e6. doi:10.1016/j.molcel.2019.01.004.
Rubin, S. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem. Sci. 2013, 38, 12–19. doi:10.1016/j.tibs.2012.10.007.
Ren, D.; Li, W.; Zeng, R.; Liu, X.; Liang, H.; Xiong, W.; Yang, C.; Jin, X. Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer. Cell Death Differ. 2024, 31, 592–604. doi:10.1038/s41418-024-01282-w.
Yu-Lee, L.Y.; Yu, G.; Lee, Y.C.; Lin, S.C.; Pan, J.; Pan, T.; Yu, K.J.; Liu, B.; Creighton, C.J.; Rodriguez-Canales, J.; Villalobos, P.A.; Wistuba, I.I.; de Nadal, E.; Posas, F.; Gallick, G.E.; Lin, S.H. Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 2018, 78, 2911–2924. doi:10.1158/0008-5472.CAN-17-1051.
Janostiak, R.; Torres-Sanchez, A.; Posas, F.; de Nadal, E. Understanding retinoblastoma post-translational regulation for the design of targeted cancer therapies. Cancers 2022, 14, 1265. doi:10.3390/cancers14051265.
Kretschmer, A.; Tilki, D. Biomarkers in prostate cancer – Current clinical utility and future perspectives. Crit. Rev. Oncol. Hematol. 2017, 120, 180–193. doi:10.1016/j.critrevonc.2017.11.007.
Shore, N.M. Management of early-stage prostate cancer. In Prostate Cancer Management: Enhancing Cost-Effectiveness and Patient Outcomes; 2015; Volume 20, Issue 12.
Samaržija, I. Post-translational modifications that drive prostate cancer progression. Biomolecules 2021, 11, 247. doi:10.3390/biom11020247.
Xu, Y.Y.; Shen, H.B.; Murphy, R.F. Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images. Bioinformatics 2020, 36, 1908–1914. doi:10.1093/bioinformatics/btz844.
Raab, S.S. The cost-effectiveness of immunohistochemistry. Arch. Pathol. Lab. Med. 2000, 124, 1185–1191. doi:10.5858/2000-124-1185-TCEOI.
Leslie, S.W.; Shamsudeen, I.A. Prostate cancer tissue-based biomarkers. [Updated 2023 May 30]. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK587345/.
Tanase, C.P.; Codrici, E.; Popescu, I.D.; Mihai, S.; Enciu, A.M.; Necula, L.G.; Preda, A.; Ismail, G.; Albulescu, R. Prostate cancer proteomics: Current trends and future perspectives for biomarker discovery. Oncotarget 2017, 8, 18497–18512. doi:10.18632/oncotarget.14501.
Assadi, M.; Jokar, N.; Ghasemi, M.; Nabipour, I.; Gholamrezanezhad, A.; Ahmadzadehfar, H. Precision Medicine Approach in Prostate Cancer. Curr. Pharm. Des. 2020, 26, 3783–3798. https://doi.org/10.2174/1381612826666200218104921.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ponce Health Sciences University Scientific Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their articles. All works are published under the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly cited.